SLAC Program Update

By Jonathan Dorfan, Director

FNAL HEPAP Meeting

April 26-27, 2002

B Factory – Performance and Upgrades

- Run continues to go well. On track for 100 fb⁻¹ by time of shutdown at the end of June 2002
- Running will commence mid-November, 2002 after considerable downtime activities
- Upgrade of facility continues PEP-II will have installed capability of 10³⁴ cm⁻² sec⁻¹ following this Summer's down
- Another round of RF/Vacuum improvements will be installed in Summer 2004 providing a capability of 2x10³⁴ cm⁻² sec⁻¹
- Anticipate > $600 \, fb^{-1}$ by 2006

Integrated Luminosity

BABAR Physics

BABAR continues to publish at an impressive rate. 25 papers are now published or submitted for publications

- ✓ 13 papers accepted/published in Physical Review Letters
- **✓** 3 more submitted for publication in Physical Review Letters
- √ 7 papers published in Physical Review D
- √ 1 more paper submitted to Physical Review D
- ✓1 paper published in NIM

Main *CP* results were updated for Winter conferences

$$\sin 2b = 0.75 \pm 0.09 \pm 0.04$$
 (based on 57 fb⁻¹)

From B ® p⁺ p[−]

$$S = -0.01 \pm 0.37 \pm 0.07$$

$$C = -0.02 \pm 0.29 \pm 0.07$$

CP asymmetry in CP-1 and +1 modes

 $sin2b = 0.75 \pm 0.09 \text{ (stat)} \pm 0.04 \text{ (sys)}$

$J/\Psi K^{*0}$ 0.62 ± 0.56 Xc1 Ks 0.83 ± 0.48 $\Psi(2s)K_s$ 0.80 ± 0.32 $J/\Psi~K_{_S}~(\pi^0\pi^0)$ 0.41 ± 0.32 $J/\Psi K_L$ 0.73 ± 0.19 $J/\Psi K_s (\pi^+\pi^-)$ 0.80 ± 0.11 All modes 0.75 ± 0.09 high production of the contract of the contrac 0.2 0.4 0.6 0.8 1 1.2 1.4 sin2B

sin2β in sub-samples

Individual modes and sub-samples are all consistent.

CKM Interpretation

Our $sin2\beta$ measurement is consistent with current Standard Model constraints from measurements of other parameters.

$$\bar{\rho} = \rho(1-\lambda^2/2)$$
$$\bar{\eta} = \eta(1-\lambda^2/2)$$

Method as in Höcker et al, Eur.Phys.J.C21:225-259,2001 (also other recent global CKM matrix analyses)

Branching Fractions and CP Asymmetries in $B \rightarrow \pi^+ \pi^-$ and $B \rightarrow K^+ \pi^-$ modes

Branching fractions in units of x 10⁻⁶

$$B(K^+p^-) = (17.8 \pm 1.1 \pm 0.8)$$

$$B(K^+K^-) < (1.1, 90\% C.L.)$$

Direct CP asymmetry

$$A_{K\pi} \equiv \frac{N_{K^-\pi^+} - N_{K^+\pi^-}}{N_{K^-\pi^+} + N_{K^+\pi^-}}$$

$$A_{Kp} = -0.05 \pm 0.06 \pm 0.01$$

 $\Delta \mathsf{E}$

Likelihood projections

Mixing and Lifetime measurements with rare decays

• Measure B lifetime using $B^0 \rightarrow p^+ p^- / K^{\pm} p^{\mp}$

$$\Rightarrow$$
 t = 1.66 ± 0.09 ps

• Measure Δm_d using $B^0 \to K^+ p^-$

$$\Rightarrow \Delta m_d = 0.517 \pm 0.062 \,\mathrm{ps}^{-1}$$

Select $B \rightarrow K\pi$ sample and plot the asymmetry between mixed/unmixed events.

Cross-check

Time-dependent CP Measurement

$$A_{cp,f}(t) = S_f \sin \Delta m \Delta t - C_f \cos \Delta m \Delta t$$

$$S_{pp} = -0.01 \pm 0.37 \pm 0.07 [-0.66, +0.62]$$

 $C_{pp} = -0.02 \pm 0.29 \pm 0.07 [-0.54, +0.48]$

Select B→ππ sample and plot the asymmetry between mixed/unmixed events.

•Starting to explore other (non-charmonium) modes such as B® D*D*, more to come!

CP asymmetry in b \rightarrow ccd decays: $D^{*\pm}D^{*+}$ and $D^{*\pm}D^{+}$

$$A_{cp,f}(t) = S_f \sin \Delta m \Delta t - C_f \cos \Delta m \Delta t$$

$$\begin{array}{cccc}
& & & & & & & & & \\
S & = & -0.05 \pm 0.45 \pm 0.05 \\
C & = & 0.12 \pm 0.30 \pm 0.05 \\
& & & & & & \\
\hline
D^*D \\
S_{+-} & = & -0.43 \pm 1.41 \pm 0.20 \\
C_{+-} & = & 0.53 \pm 0.74 \pm 0.13 \\
S_{-+} & = & 0.38 \pm 0.88 \pm 0.05 \\
C_{-+} & = & 0.30 \pm 0.50 \pm 0.08
\end{array}$$

Next step: angular analysis for D*D*

- Experiment has just begun production running at 120Hz
 - Has achieved the very impressive beam stability and background rejection performance needed to make this 0.2 ppm asymmetry measurement
- E158 will run through May 2002 and return for its final 3 month run in FY2003

SLAC E158 in End Station A

Left-Right Asymmetry in Fixed Target Moller Scattering

Goal: Most precise $\sin^2 \theta_W$ away from the Z pole

$$A_{LR} = \frac{\sigma - \sigma}{\sigma + \sigma} = \frac{A_Z}{A_{\gamma}} = 0.18 \text{ parts per million}$$

$$\delta (A_{LR}) = +/-7\% +/-3\%$$

The Weak Mixing Angle at Low Q

E158 Physics Data

GLAST

- Experiment has made good technical progress
 - **4** Highly successful balloon flight of prototype module
 - **\u03a** Final prototype hardware being produced for testing
 - **♥ Clean-room and assembly infrastructure in place at SLAC**
- International agreements finally secure SLAC is moving fast to implement an International Finance Committee ala BABAR
- Cost and schedule baseline not yet finalized Lehman review this Summer aimed at completing the baseline process

GLAST LAT Overview: Design

Si Tracker
pitch = 228 µm
8.8 10⁵ channels
12 layers × 2.8% X₀
+ 4 layers × 18% X₀
+ 2 layers

Segmented scintillator tiles 0.9997 efficiency

Grid (& Thermal Radiators)

Csl Calorimeter

Hodoscopic array $8.4 \times X_0$ 8×12 bars $2.0 \times 2.7 \times 33.6$ cm

- ⇒ cosmic-ray rejection
- ⇒ shower leakage correction

Data acquisition

3000 kg, 650 W (allocation) 1.8 m ´ 1.8 m ´ 1.0 m

20 MeV - 300 GeV

Flight Hardware & Spares

16 Tracker Flight Modules + 2 spares

16 Calorimeter Modules + 2 spares

1 Flight Anticoincidence Detector

Data Acquisition Electronics + Flight Software

Flight and Operation: Launch on August 4, 2001

The balloon reached an altitude of 38 km, with a float time of 3 hours.

First results (real-time data): trigger rate as a function of atmospheric depth. The trigger rate never exceeded 1.5 KHz, well below the BFEM capability of 6 KHz.

All Subsystems Performed Properly

Results: Reconstruction of Events

Charged particle event: The track passes through the ACD (top), the tracker, and the calorimeter.

Note: Tracker has no Si strips in the upper right corner

Gamma-ray event:

Two tracks are seen in the tracker and calorimeter. Pattern recognition of an inverted "V" will allow us to selected gamma-rays from cosmic-ray background.

Complex event:

Particle and gamma –ray splashes deposit energy in ACD, Tracker, and Calorimeter.

Tracker Production Overview

WBS 4.1.9: LAT I&T

Renovated
Light-Assembly
Building
I&T Facility

Next Linear Collider

- National NLC R&D Collaboration continues to make excellent progress
 - **We welcome Brookhaven National Laboratory into the existing SLAC, FNAL, LBNL, LLNL Collaboration**
- R&D progress in many areas some of which you will hear in the FNAL presentations. Collaboration has established:
 - **Major progress on eliminating structure breakdown problem**
 - **A set of tests to demonstrate full RF power distribution capabilities**
- SLAC is actively participating in the emerging national effort focused on enhanced participation in machine and detector R&D
 - **We have provided a list (the "Himel list") of machine R&D tasks for community involvement**
 - **We have had representatives at the FNAL and Cornell meetings**
 - **♦ SLAC's outreach meeting will be May 31st**

Layout of the NLC

NLC/JLC Rounded Damped-Detuned Structure (RDDS)

RDDS Cutaway View Showing 8 of 206 Cells

HOM Manifold

Beam Accelerator Cell (Iris Dia. = 11.2-7.8 mm)

Made with Class 1 OFE Copper.

 Cells are Precision Machined (Few µm Tolerances) and Diffusion Bonded to Form Structures.

- 1.8 m Length Chosen so Fill Time ≈ Attenuation Time ≈ 100 ns.
- Operated at 45 °C with Water Cooling. RF Losses are about 3 kW/m.
- RF Ramped During Fill to Compensate Beam Loading (21%). In Steady State, 50% of the 170 MW Input Power goes into the Beam.

FNAL HEPAP Meeting

Low Group Velocity Traveling-Wave Structures

- Best performance thus far with 3% c initial group velocity structures.
- One was processed to 86 MV/m, after which breakdown rate at 70 MV/m was about 1 in 200,000 pulses, dominated by input/output coupler events. Rate at 65 MV/m was about 10 times smaller, which would be acceptable for the NLC.
- Damage level small during processing (1/2° phase shift) – tolerable for NLC even if increased at same rate after processing, which has not been observed.
- Tests of 3% c and 5% c initial group velocity structures with improved couplers, NLCacceptable iris radii and wakefield detuning are scheduled this year – versions with wakefield damping will be ready in early 2003.

T53VG3: 53 cm long, 60 cells

NLC Linac RF Unit

Low Level RF System

One 490 kV 3-Turn Induction Modulator

Eight 2 KW TWT Klystron Drivers (not shown)

Eight 75 MW PPM Klystrons

Delay Line Distribution System (2 Mode, 4 Lines)

Eight Accelerator Structure Sextets

Induction Modulator

11.4 GHz RF Source

Eight-Pack Test (Phase I)

Multi-Moded SLED II

Begin Testing at End of 2002

Eight-Pack Test (Phase II)

Low Level RF System

One 490 kV 3-Turn Induction Modulator

Eight 2 KW TWT Klystron Drivers (not shown)

Eight 75 MW PPM Klystrons

Reduced Delay Line Distribution System (2 Mode)

Two Accelerator Structure Sextets

Workshop at SLAC on Linear Collider R&D Opportunities May 31, 2002

Goal

The overall goal is to facilitate the university community involvement in LC detector and accelerator R&D. This should build on the work already done at FNAL and Cornell. The following sub-goals will help accomplish this:

- Discuss the mechanisms to organize this involvement on a national (and international) level to foster collaboration and avoid duplication of efforts
- Provide lists and descriptions of concrete problems that need development work. These lists should be made before the meeting and presented at the meeting
- Aid the formation of the necessary communications links and smaller groups to facilitate the writing of proposals and starting of R&D efforts

Rough Draft Program

- 9:00 Welcome. Goals of the Workshop.
- 9:10 What's the Mechanism for Submitting, Reviewing and Funding Proposals? The View from the LC Steering Committee Dorfan
- 9:30 Discussion
- 9:50 Accelerator status and R&D Issues--Where Can We Help?
- 10:50 Coffee
- 11:20 Experiences Working On Machine R&D Burrows
- 11:35 Why the LC Detector Can't Be Built Today--Outstanding R&D Problems and the International R&D List
- 12:35 Lunch
- 1:30 Parallel sessions
- 3:30 Coffee
- 3:45 Summary of parallel sessions by the working group leaders
- 4:30 Coordinating Efforts Between the Regions The Role of the North American Working Group
- 5:00 Panel Discussion and Open Questions
- 5:30 Wine and Cheese

There will be 5 parallel sessions:

- 1. Vertex detectors
- 2. Tracking detectors
- 3. Calorimetry
- 4. Machine detector interface including energy, luminosity and polarization measurement
- 5. Accelerator R&D

At each section there will be 1-2 talks giving status and lists and then discussion leading to ideas of who wants to work on what with whom.

Tight Budgets

- HEP budgets have been excessively tight the past 5
 years. In a world of 4% per year inflation, we have had
 to accommodate the HEP Program to non-inflation
 corrected budgets
- SLAC has been well treated within those constraints, but the impact on the laboratory has nonetheless been major:
 - We are very significantly understaffed in all our highest priority programs
 - **♥** Costs, albeit modest at ~ \$4M/year, for the upgrade of *B* Factory come from within the flat-flat envelope. Likewise for increased power costs
 - **Critical maintenance on aging infrastructure is constantly deferred**

SLAC HEP Funding

(FY2002 Dollars)

- * For comparability over the years, the following two adjustments have been made:
- 1) Waste Management funding (~\$2.7 M per year), transferred from EM since FY98, has been excluded
- 2) Security funding (~\$1.4 M per year), directly funded from SC since FY01, has been added

FY	93	94	95	96	97	98	99	00	01	02	03
Base Program *	189.8	164.0	155.7	153.3	151.5	162.8	164.7	165.6	160.4	162.2	156.0
Base Prog. + Construction *	189.8	212.0	212.4	218.3	209.8	173.8	164.7	167.8	165.8	162.2	156.0

SLAC FY03 Budget

• The proposed FY03 budget for SLAC is \$675K below our FY02 funding level. NLC funding remains fixed at its FY02 level of \$16.2M.

At this level of funding, we must accommodate:

⋄ Inflation : \$5M

⋄ Increased power costs : \$2M

 At this level, none of the highest priority level programs can be insulated from significant cuts

 We have not yet decided how we will accommodate to the budget stresses in FY03